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1 Introduction

The Kalman filter is the optimal filter for linear models with Gaussian, zero mean uncorrelated
noise. In its most basic form, this filter can perform the estimation when the system dynamics is
time invariant or if its time evolution is known apriori (by using the appropriate A and C matrix for
every time instant). Consider the following set of equations where the system can evolve according
to different mode dynamics

xt+1 = Ajxt +Wt j ∈M (1)

yt = Cjxt +Rt j ∈M (2)

where M is the set of all possible mode index.
This is a linear hybrid system where the mode switches within the set M and the dynamics is

linear for every mode. The estimation problem is as follows: Given measurements from a system
with multiple modes of operation, how do we estimate the state and the current mode of operation.

This is a very relevant problem in the context of vehicle tracking. Suppose we wish to track the
location of an aircraft using a radar. The aircraft can be in several possible modes like climb, cruise,
descent or a coordinated turn. Each of these maneuvers is governed by separate equations and we
wish to know the correct location of the aircraft during all the possible stages of flight.

The optimal filter for multi model estimation is computationally expensive. It requires track-
ing the exponentially growing mode histories and is not practically feasible. Thus approximate,
non-optimal estimators were developed. In this report, I would compare the performance of two
such methods- the Interacting Multi Model (IMM) estimator and the Generalized Pseudo Bayesian
estimator of order 1 (GPB1) in the context of aircraft tracking.

For this report, the literature that I referred to is summarized:

• Papers on the Interacting Multi Model algorithm [2], [3]

• Survey of Interacting Multi Model algorithms [6]

• Papers on GPB filter [4]

• Survey describing dynamic models to describe a targets motion [5]

• Comparison between the IMM estimator and optimal estimator [1]

Some of the question that I had while starting out the project are listed below.

• How do the IMM and GPB1 estimators compare

• What are appropriate performance metrics for estimation of hybrid systems

• How important is the set of models that we provide to the estimators. If the aircraft performs
maneuvers described by models from set M , how will the filter perform when provided with
another set of models R

In the following sections, I will first summarize the two estimation algorithms. After that the
results of the simulations are described.
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Figure 1: Flowchart for GPB of order 1 when there are two modes. Note that the covariance is
denoted by P where as I would be using Q in the report. Source : Prof Jianghai Hu

2 The estimator

2.1 The Generalised pseudo Bayesian estimator

The idea behind the GPB estimator is to approximate the following term that comes in the optimal
estimator

Pr[x(k + 1)|Y k+1] =
rk+1∑
l=1

N [x(k + 1); x̂M
k+1=l(k + 1|k + 1), QMk+1=l(k + 1|k + 1)]

∗Pr{Mk+1 = l|Y k+1}

(3)

where r is the number of modes and the sequence of mode history

{Mk+1 = l} = {M(1) = i1,M(2) = i2, ...,M(k + 1) = ik+1} (4)

This has an exponentially growing number of terms with time.
A first order approximation for this is used in the GPB1 algorithm.

Pr[x(k + 1)|Y k+1] =
r∑

l=1

N [x(k + 1); x̂M(k+1)=l(k + 1|k + 1), QM(k+1)=l(k + 1|k + 1)]

∗Pr{M(k + 1) = l|Y k+1}
(5)

A second order approximation will involve conditioning on two state histories M(k+1) and M(k).
In this project, I will focus on the GPB1 algorithm.

This expression (5) intuitively explains the broad idea for solving the multi model estimation
problem. We will use a bank of r Kalman filters in parallel, each tuned to a particular system
dynamics. Outputs from each of these filters need to be combined in an appropriate fashion to come
up with a single estimate. This is summarized in Fig (1)

Let π denote the transition probability matrix between the states and µj(k) denote the probability
of mode j being the true state of the system at time k. We describe one cycle of the GPB1 algorithm
when the hybrid system is described by Equation (1), (2)

Given x̂(k − 1|k − 1), Q(k − 1|k − 1) mode probabilities µ(k − 1)
Step 1: Filtration Run each of the r Kalman filter with the given initial condition (Nothing

new; same as what we did in class)
For all i = 1, ..., r
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Propagation:
x̂i(k|k − 1) = Aix̂(k − 1|k − 1)

Qi(k|k − 1)i = AT
i Q(k − 1|k − 1)AT

i +W (k − 1)

Kalman gain:
Ki(k) = QT

i (k|k − 1)CT
i [CiQ(k|k − 1)Ci +R(k − 1)]−1

Measurement update:

x̂i(k|k) = x̂i(k|k − 1) +Ki(k)(y(k)− Cix̂i(k|k − 1))

Qi(k|k) = (I −Ki(k)Ci)Qi(k|k − 1)

Calculating likelihood functions. This is an indication of how well the measurement is explained
by this model (this particular filter). The terms in the equation are the residue and the residue-
covariance.

Λi = N (y(k)− x̂i(k|k − 1); 0;CiQ(k|k − 1)Ci +R(k − 1))

Step 2: Updating mode probability In this step, the likelihood of every filter is merged
with the knowledge of the Markovian transitions probability of the states. So even if a state s has a
high likelihood at time k, it may not be the maximum likelihood estimate at time k because it is an
unlikely transition from the state at time (k-1)

µi(k) =
1

ck
Λi(k)

j=r∑
j=1

πijµj(k − 1)

Step 3: Merging the output

x̂(k) =
r∑

i=1

µi(k)x̂i(k|k)

Q(k|k) =
n∑

i=1

µi(k)[Qi(k|k) + (x̂(k)− x̂i(k|k))(x̂(k)− x̂i(k|k))T ]

The mode estimate:
m̂(k) = argmax µi(k)

2.2 IMM Estimator

The IMM estimator is similar to the GPB1 estimator except for one difference. The input for each
for the Kalman filters is different and not equal to x̂(k− 1) but rather x̂i(k− 1|k− 1) ∀i = 1, ..., r.
We define a few additional variables. x̂0i(k− 1|k− 1) is the input given to each of the Kalman filters
1,..., r and µij(k − 1|k − 1) is the mixing probability. One cycle of the IMM estimator algorithm is
as follows:

Step 1: Interaction
For all i, j ∈ {1,2,..., r }

µij(k − 1|k − 1) =
1

cj
πijµi(k − 1)

where cj =
∑

i πijµi(k − 1) is the normalising factor.
For all modes i=1,...,r

x̂0i(k − 1|k − 1) =
r∑

j=1

x̂j(k − 1|k − 1)µji(k − 1|k − 1)
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Q0i(k − 1|k − 1) =
r∑

j=1

µji(k − 1|k − 1) ∗ [Qj(k − 1|k − 1)+

(x̂j(k − 1|k − 1)− x̂0i(k − 1|k − 1))(x̂j(k − 1|k − 1)− x̂0i(k − 1|k − 1))T ]

Step 2: Filtering Same as the GPSB1, usinf x̂0i(k− 1|k− 1) and Q0i(k− 1|k− 1) as inputs for
each filter

Step 3: Updating mode probability Same as the GPSB1
Step 4: Merging the output Same as GPSB1

3 Aircraft tracking example

Consider the case of a moving aircraft which we wish to track. The aircraft can be in one of the two
modes: maneuvering (non - zero acceleration) or non-maneuvering (zero acceleration). We restrict
the motion of the aircraft to two dimensions (x-y plane) for simplicity.

Let the following be the modes of operations be considered. We may or may not use all of them
in each example

1. Uniform motion in a straight line

2. Constant rate turn with ω = 0.1 rad/sec

3. Constant rate turn with ω = −0.1 rad/sec

4. Constant rate turn with ω = 0.05 rad/sec

5. Constant rate turn with ω = −0.05 rad/sec

The dynamics for mode 1 with a generic noise term is
x
ẋ
y
ẏ


k+1

=


0 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1



x
ẋ
y
ẏ


t

+Noiseprocess (6)

The dynamics for mode 2 for any constant turn rate ω and a process noise is
x
ẋ
y
ẏ


k+1

=


1 sinωT

ω
0 −1−cos(ωT )

ω

0 cos(ωT ) 0 −sin(ωT )

0 1−cos(ωT )
ω

1 sinωT
ω

0 sin(ωT ) 0 cos(ωT )



x
ẋ
y
ẏ


t

+Noiseprocess (7)

The measurement equation is the same for all modes with Cj = I4X4 ∀j ∈M .
We now look at examples that cover the cases of M=R, M ⊂ R and M ⊃ R

Example 1 : R=M

Let the aircraft to be tracked perform two kinds of motion- uniform straight line and constant rate
turn of ω = 0.1rad/sec. The discrete equations are used with ∆T = 1sec. The initial state is x=0,
y=0, x velocity = 100m/s and y velocity =0. For the first 100 seconds, the aircraft is going in a
straight line. At t=101, it starts a turn with ω = 0.1rad/sec till t=150. From t=150 to t=200, it
continues in its straight line trajectory.

M=R={straight line mode, ω = 0.1 mode}
The process noise has a covariance given by W=diag(1,1,1,1) and the probability of mode shift

is given by the transition matrix

π =

[
0.95 0.05
0.05 0.95

]
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Figure 2: Trajectory of the aircraft. Straight flight from t=1 to 100 sec, omega=0.1 rad/sec turn
from t=101 to 150 sec and straight line motion from t=151 to 200 sec
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Figure 3: The velocity estimates by both methods seem to be good and similar to each other

where the first row/column represent the uniform motion mode and the second row/column represent
the omega=0.5 turn. The measurement noise has a covariance matrix R= diag(1002, 52, 1002, 52).
The velocity magnitude is fixed at 100m/s, so I wanted to have the standard deviation that was
comparable to it (which is 5m/s). For the position variance, I have a much higher magnitude
because the scale of distances covered by the radar is also much higher (in this case it is over 10 km).
The performance of an estimation algorithm is evaluated using the following metrics

• The normalized mean square deviation of the estimate from the true state.

error =
1

T

T∑
t=1

||x̂(t)− xtrue(t)||2

• The percentage of times the mode is estimated correctly.

The true trajectory of the aircraft is shown in Fig (2)
Error Results:
Normalized error of IMM filter = 104.91
Normalized error of GPB1 filter = 129.15
Thus although the state estimates seem to be pretty similar to each other visually (Fig(3) and

Fig(4) ), the net estimation error of the GPB1 method is 46% higher than the IMM method (129.15
versus 104.91). The differences in the prediction error is better explained when we look at Fig(5)
and Fig(6). Here we notice that the straight line motion and the turn mode is better identified by
the IMM estimator in comparison to the GPSB1 estimator.

5



x position
-2000 0 2000 4000 6000 8000 10000 12000

y
 p

o
s
it
io

n

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000
Position : actual and estimated, IMM

estimated trajectory
actual trajectory

(a) IMM

x position
-2000 0 2000 4000 6000 8000 10000 12000

y
 p

o
s
it
io

n

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000
Position : actual and estimated, GPB1
estimated trajectory
actual trajectory

(b) GPB1

Figure 4: The position estimates by both methods seem to similar to each other on visual inspection
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Figure 5: The mode probability µ as a function of time for IMM and GPB1. We note that the IMM
prediction is more stable and confident about the modes (has a higher probability value ascribed to
the correct mode). Turn mode is active from t= 101 to t= 150 sec
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Figure 6: Correct and incorrect prediction of mode in terms of percentage. The IMM does a better
job of correctly predicting the current mode of the system. The y axis is the fraction of time that a
mode is the Maximum Likelihood Estimate
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Figure 7: Trajectory of the aircraft for Example 2. Omega=0.05 turn from t=101 to t=150 and
Omega = -0.1 turn from t=200 to t=230
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(b) 0.05 rad/sec turn
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(c) -0.1 rad/sec turn

Figure 8: The GPB1 does well only in the case on -0.1 rad/sc turn. Rest other mode estimates are
mixed up. The IMM does better then the GPB1 in all modes of operation

Another interesting point is that the GPB1 performs much better when the measurement noise
is lower. In such conditions, GPB1 performs similar to the IMM estimator. For example, when the
measurement noise is given by R=diag(102, 1, 102, 1), the GPB1 error and the IMM error are both
1̃01.5 Also the mode prediction accuracy of the GPB1 increases to 95% for uniform motion and 90%
for the turn. (compared to 70% and 75% respectively in the case of high noise)

Example 2 : R is a superset of M

M={straight line, ω = 0.05, ω = −0.1 }, R={straight line, ω = 0.1, ω = −0.1, ω = 0.05, ω = −0.05
}

The trajectory of the flight is shown in Fig(7). The true mode of the flight is as follows: uniform
motion from t=1 to t=100 s , ω = 0.05 from t=101 to 150 s, uniform motion from t=151 to 200 s,
ω = −0.1 from t=201 to 230 s, uniform motion from t=231 to 300 s. The process and measurement
noise is the same as Example 1.

IMM Error= 103.19 and GPB1 error = 111.47. As before the IMM error is lower. Also, since
the error is normalized by time, on comparison with Example 1, we can say that adding additional
flexibility in terms of modes can potentially reduce the state estimate error.

Additional modes in R need not however improve the mode prediction. The results in Fig(8)
show that the IMM performs well in predicting the correct mode. The GPB1 gets confused between
similar modes at times. In the case of the two turns, it is unable to distinguish the rate of the turn
clearly. In the uniform motion case, the GPB1 considers the motion as a combination of all modes.
Similar to Example 1, the GPB1 performance becomes closer to the IMM performance when the
measurement noise is decreased.

Example 3 : R is a subset of M

Let us look at two sub cases here- span{R} = M and span{R} ⊂M . The actual flight trajectory (as
in Figure (2) with straight line and ω = 0.05 modes) , measurements, noise parameters and transition
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Figure 9: Plots of the mode probability µ. Time 101 to 150 sec is when the turn mode is active.
For t=1 to 100, the modes keep switching between each other in order to capture the straight line
motion
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Figure 10: Correct and in-correction prediction of mode in terms of percentage. Note the 50%
combination of bot modes that occurs to capture straight line motion

probabilities is the same as Example 1. The only difference is that the set of modes supplied to the
estimator.

M={straight line mode, ω = 0.05 mode}
R1={ ω = 0.05 mode, ω = −0.05 mode}
In this case, we see that all the modes in M are not covered by the set of modes in R1. Specifically,

the straight line motion is not present in the set R1 which is fed to the estimators. The result in this
case is interesting. Although the straight line motion is not given to the estimator, it still works well.
This is because the straight line motion can be captured by considering both the left and right turn
modes with probability 0.5 each. This brings us to the notion of spanning modes. If the modes in set
R1 can be combined, in some probabilistic sense (this is a very loose argument; I am just explaining
it intuitively) to describe all modes in M , we can still use the IMM/GPB1 estimator.

Figure (9) shows the mode probabilities when we use the set R1 to track the aircraft. The
estimator is able to track the straight lines by shifting between the two turn modes as seen in
Fig(10).

Error when using R1:
IMM estimation error = 112.8
GPB1 estimation error = 132.7

Let us now look at another example where R2 spans the set M.
R2= { ω = 0.15 mode, ω = −0.05 mode }
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Error when using R2:
IMM estimation error = 125.76
GPB1 estimation error = 167.7
The probability plots for this case is shown in Fig (11)
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Figure 11: Time 101 to 150 sec is when the turn mode is active. For t=1 to 100, the modes keep
switching between each other in order to capture the straight line motion. Both the IMM and GPB1
have different probabilities of modes to help them capture the straight line. This is not unexpected
as the IMM has an extra ’interaction’ step before the parallel filtering.
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(a) Uniform motion

Modes
Omega = 0.15 Omega = -0.05

P
e

rc
e

n
ta

g
e

 o
f 

ti
m

e

0

10

20

30

40

50

60
Actual Mode is omega=0.05 turn

IMM
GPB1
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Figure 12: Correct and incorrect prediction of mode (by percentage). To capture uniform motion, I
had naively expected a 3:1 ratio between the 0.15 and -0.05 modes. This is however incorrect because
(a) The combination is non linear in omega since the A matrix has a sine and cosine term, and (b) I
forgot to account for the modes having non-zero probabilities and still not being the MAP estimate.
In the GPB1 case, the ω = 0.15 mode consistently has a probability of about 0.3 in t=1 to t=100

Now take the case of R3= {ω = −0.15, ω = −0.05 }. We get large errors in the estimates. IMM
error= 280.2 and GPB1 error = 280.7 In this particular case, the filter is stable, but has a large
error. However, when the measurement noise is low, the filter fails.

Thus the conclusion for this section is that we would like to have the span of R equal to the
modes in M. This seems to be intuitively sufficient for the filter to work, even though performance
might be bad. But when the span of R is not equal to the modes in M, we can not have guarantees
that the filter will be stable.

A case in point is the extreme conditions in R4= {ω = −0.75, ω = −0.70 } and R5= {ω = 0.75,
ω = −0.70 }. Using R4 causes the filter to fail as it cannot capture the left turn that the aircraft
takes. On the other hand, R5 is stable, although it leads to pretty bad performance and very noisy
estimates as shown in Figure (13)
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Figure 13: If modes in R are very different from modes in M (although they still span the set M), we
might get poor quality estimates. The good news is that the filter is stable in spite of a bad guess
for the set R

R=M (from Example 1) R1 R2 R3 R5

IMM 104.9 112.8 125.76 280.2 445.8
GPB1 129.15 132.7 167.7 280.7 470.6

Table 1: Comparison of the error when we have different R. As we move to the right columns , the
modes of R are further away from those of M (although they can still be combined to span M). This
explains the increasing error.

4 Discussion

In this project, I have explored the use of IMM and also compared it with the GPB1 algorithm. This
is done considering a realistic scenario where we do not know all possible system modes that need to
be supplied to the filter.

In case of a perfect match, that is when R=M, we observe the best performance of the estimator.
This is obvious. Also the better performance of the IMM estimator over the GPB1 is seen. Visu-
alization of the mode probability gives us some intuition of what modes the filter believes is active.
The more interesting case is when we have R⊂M and R⊃M. When R has more modes than M, the
GPB1 filter performs poorly in mode estimation. IMM is robust to such ’over specified’ mode sets.
This is a really useful property. When faced with unknown targets which we need to track, the filter
performance should not be compromised just because we enumerated all likely modes in the set R.
This gives a tracking system operator a lot more flexibility in tuning the filters. We note that the
case of R⊂M can lead to failures. This can happen when modes in M cannot be expressed using
available modes in R. When R spans the set M the filter will remain stable.

The performance gap between the IMM and the GPB1, in terms of the error is negligible when the
measurement noise is very low. Although not shown in this report, we also observe the performance
gap between the GPB1 and the IMM estimator tend towards zero when the measurement noise is
really high (coefficient of variation is close to 1). When the noise is really high, it is very hard for
both filters to do the estimation and they are equally worse. So the true performance benefits of the
IMM over the GPB1 is observed when the noise levels are moderate.

Finally, I just wish to touch upon the question raised in class- Why does the GPB2 perform as
well as the IMM. When there are r modes, the GPB1 algorithm uses r Kalman filters in parallel
where as the GPB2 algorithm uses r2 Kalman filters. Naturally GPB2 wouldperform better. When
we use the complete GPB algorithm, at time instant t, we would need rt Kalman filters. This is
the optimal solution. In the literature, it is mentioned that the GPB2 performs similar to IMM.
The performance of approximate methods (GPBand IMM) to the optimal is not compared. The
reason for the good performance of the IMM is explained in literature [1]. In the paper,the authors
derive an expression for the optimal estimator and explicitly identify the term that corresponds to
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the ’Interaction’ step (the first step which ensures that each filter gets a different prior estimate) we
see in the IMM. This feature of the IMM makes it a good approximation to the optimal multi model
filter. I am however not sure if the increase in number of filters to rr is the only thing that makes
the GPB2 a good approximation.
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