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Network models

“A network is a set of items, which we call nodes, with connections
between them, called edges”1

Networks models are widely used in several domains

Eg: Spread of epidemics, opinions on social networks, failure in
infrastructure networks

Models are characterized by

Nodes
Network topology (adjacency matrix A = [aij ])
A description of the process (How it evolves in time)

1M Newman, The structure ans function of complex networks
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Network topology may change with time

Eg: Long term models, demand cycles in infrastructure
networks, noise

Deterministic or random transitions

Our work:

Model for process on networks with randomly switching
topologies
Stability
Control
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I. Model formulation
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Model

N nodes

x(t) ∈ RN×1 is the state node at time t

M discrete modes {m1,m2, . . . ,mM}
Each corresponds to an adjacency matrix Am

Linear system dynamics within each mode:

x(t+ 1) = f(Am)x(t)

For simplicity, x(t+ 1) = Γmx(t)
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Model (continued)

Node state : x(t)
Discrete mode: m (finite set)
Linear dynamics: x(t+ 1) = Γmx(t)

Modes (and the topology) change with time

Markov transition

P[m(t+ 1) = j|m(t) = i] = πij(t)

Transition matrix Πt are known for a system
Note: Transition matrices may be time varying
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Summary of Model

The system is completely described by

x(t+ 1) = Γm(t)x(t)

P[m(t+ 1) = j|m(t) = i] = πij(t)

x(0),m(0) (given)

Features: Continuous node representation, weighted directed
interaction and switching topology

This is a (Positive) Markov Jump Linear System
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Model example: Air traffic delay

Nodes: Airports, x(t) delay level at airports

12 discrete modes (Eg: Chicago inc, SFO dec, Low NAS dec ..)

Transition probability Πt depends on the time of day

SFO increasing delay
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~x(t + 1) = �1~x(t) ~x(t + 1) = �2~x(t)

t0 t1 t1 t2

Mode 1 Mode 2

Mode
transition

Model is built and validated using operational data 2

2ACC 16, CDC 16
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II. Stability of the switched
network model
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What does stability of MJLS mean?

For a classic LTI system x(t+ 1) = Ax(t), stability depends on
spectral radius of A

However stability of Γ1, ..., ΓM is neither necessary nor sufficient

x(t) is a random variable (need formal stability definition)

Why do we care about stability?

If unstable, want to control
If stable, want to recover optimally
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Asymptotic stability definitions

How does x(t) evolve as t→∞?

Mean Stability:
For any ~x(0) ≥ 0, limt→∞ E[||~x(t)||] = 0

Almost Surely Stable:
For any ~x(0) ≥ 0, P[limt→∞ ||~x(t)|| = 0] = 1
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Stability Results

System dynamics:

x(t+ 1) = Γm(t)x(t)

P[m(t+ 1) = j|m(t) = i] = πij

x(t) ≥ 0 ∀t
x(0),m(0) (given)

Result 1

The system is Mean Stable if and only if

Spectral Radius(B) < 1

where B = (ΠT ⊗ In)diag(Γi)
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Stability Results

System dynamics:

x(t+ 1) = Γm(t)x(t)

P[m(t+ 1) = j|m(t) = i] = πij(t)

x(t) ≥ 0 ∀t
x(0),m(0) (given)

Result 1 (extension)

If Markovian transition matrices are periodic with time period K, the
system is mean stable if and only iff

Spectral Radius (BkBk+1 . . .Bk+K) < 1

for some k ∈ [0, K] and Bt = (ΠT
t ⊗ In)diag(Γi)
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Stability Results

System dynamics:

x(t+ 1) = Γm(t)x(t)

P[m(t+ 1) = j|m(t) = i] = πij(t)

x(t) ≥ 0 ∀t
x(0),m(0) (given)

Result 2

Mean Stability ⇒ Almost Sure Stability
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Example: Air Traffic Delay Model

Periodic system (24 hours) and time dependent transition
probability, i.e Π = Πt,

Spectral radius (B1B2 . . .B24) = 0.67 < 1
Mean Stable and Almost Surely Stable

If average transition matrix for the day,

Spectral radius (B) = 1.061 > 1
Not Mean Stable

The temporal patterns in the discrete mode transition probabilities
are critical in stabilizing the system
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III. Control of the switched
network model
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What can we control?

Aim: Minimize ||
∑T

t=1 E[x(t)]|| (eg. delay cost)

Two control options:

1 Discrete mode

Can force certain mode transitions to occur
Modifies the transition probability Π
Penalty on forced transition

2 Continuous state

x(t+ 1) = Γm(t)x(t)− u(t)

Penalty of βTu(t)
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Overview

May have time constraints

May have node (and 
time) constraints

Control 
Strategies

Mode control

Online 
controller

Offline 
controller

State control Mode + State 
control
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Mode controller - Online

Observe x(t∗), m(t∗) at time t∗

Control decision: Force a transition or random transition (Πt)

Penalty: C(i, j, t) if forced from mode i to j at t

Minimize:
∑T

t=t∗ ||E[x(t)]||+
∑

i,j C(m(t∗), j)1forced

Greedy myopic solution:

min{ J(x(t∗), i, t∗) , min
j

( C(i, j, t∗) + J(Γix(t∗), j, t∗ + 1) )}

J(x(t∗), i, t∗) =
∑T

t=t∗ ||E[x(t)]|| : Easy to compute
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Mode controller - Offline

Observe: m(t) at time t

Pre-determined control decision: Force a transition or random
transition (Πt)

Minimize
∑T

t=1 ||E[x(t)]||+ E[
∑

i,j,tC(i, j, t)]

Solution: Greedy heuristic

Step 1 Compute cost for all forced transitions (i, j, t)
Step 2 Add min cost transition to control policy and update Π
Step 3 Repeat until cost stops decreasing
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State controller

Observe: x(t∗) and m(t∗)

Myopic, greedy formulation to decide on u(t∗)

Penalty: βTu(t∗)

Optimize u(t∗) at time t∗

Min
T∑

t=t∗

||E[x(t)]||+ βTu(t∗)

s.t x(t∗ + 1) = Γm(t∗)x(t∗)− u(t∗)

...
...

x(t∗ + 1) ≥ 0, 0 ≤ u(t∗) ≤ Umax
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State controller - Solution

Threshold policy

ui(t
∗) =

{
min{Umax, [Γm(t∗)x(t∗)]i} if βi < di

0 otherwise

di is a known function (depends on Πt and Γm)

Can account for temporal constraints and node constraints easily
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Application: Air traffic delay model

Baseline, no control: ||
∑24

t=1 E[x(t)]|| = 1

Mode control (expected delay + mode transition cost)
Online heuristic: 0.86
Offline heuristic: 0.88

Offline heuristic with temporal constraint: 0.94

Allowed control time
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Application: Air traffic delay model

State control (expected delay + state control cost)

Cost with control at all airports: 0.17

Cost with control at only one airport:
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Summary

1 Switched system model for switching topology network models

2 Conditions for the system to be stable

3 Heuristics to control the mode and state

Extensions:

Finite time stability

Optimal mode controllers, integration of mode and state control
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