Stability and control of switching network models

Karthik Gopalakrishnan

Advisor: Prof. Hamsa Balakrishnan

Massachusetts Institute of Technology

23 Feb 2018

Network models

"A network is a set of items, which we call nodes, with connections between them, called edges" $^{1}\,$

- Networks models are widely used in several domains
- Eg: Spread of epidemics, opinions on social networks, failure in infrastructure networks
- Models are characterized by
 - Nodes
 - Network topology (adjacency matrix $A = [a_{ij}]$)
 - A description of the process (How it evolves in time)

¹M Newman, The structure ans function of complex networks

Network topology may change with time

- Eg: Long term models, demand cycles in infrastructure networks, noise
- Deterministic or random transitions
- Our work:
 - Model for process on networks with randomly switching topologies
 - Stability
 - Control

I. Model formulation

Karthik Gopalakrishnan

Switching network models

23 Feb 2018 4 / 25

Model

- $\bullet \ N \ {\rm nodes}$
- $x(t) \in \mathbb{R}^{N \times 1}$ is the state node at time t
- M discrete modes $\{m_1, m_2, \ldots, m_M\}$
 - Each corresponds to an adjacency matrix ${\cal A}_m$

Model

- $\bullet \ N \ {\rm nodes}$
- $x(t) \in \mathbb{R}^{N \times 1}$ is the state node at time t
- M discrete modes $\{m_1, m_2, \ldots, m_M\}$
 - Each corresponds to an adjacency matrix A_m
- Linear system dynamics within each mode:

$$x(t+1) = f(A_m)x(t)$$

• For simplicity,
$$x(t+1) = \Gamma_m x(t)$$

Model (continued)

Node state : x(t)Discrete mode: m (finite set) Linear dynamics: $x(t + 1) = \Gamma_m x(t)$

- Modes (and the topology) change with time
 - Markov transition

$$\mathbb{P}[m(t+1) = j | m(t) = i] = \pi_{ij}(t)$$

- Transition matrix Π_t are known for a system
- Note: Transition matrices may be time varying

Summary of Model

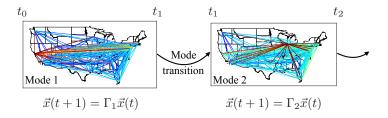
• The system is completely described by

$$\begin{aligned} x(t+1) &= \Gamma_{m(t)} x(t) \\ \mathbb{P}[m(t+1) &= j | m(t) = i] = \pi_{ij}(t) \\ x(0), m(0) \quad \text{(given)} \end{aligned}$$

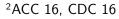
- Features: Continuous node representation, weighted directed interaction and switching topology
- This is a (Positive) Markov Jump Linear System

Model example: Air traffic delay

- Nodes: Airports, x(t) delay level at airports
- 12 discrete modes (Eg: Chicago inc, SFO dec, Low NAS dec ..)
- Transition probability Π_t depends on the time of day



Model is built and validated using operational data ²



Karthik Gopalakrishnan

Switching network models

II. Stability of the switched network model

Karthik Gopalakrishnan

Switching network models

23 Feb 2018 9 / 25

What does stability of MJLS mean?

• For a classic LTI system x(t+1) = Ax(t), stability depends on spectral radius of A

What does stability of MJLS mean?

- For a classic LTI system x(t+1) = Ax(t), stability depends on spectral radius of A
- However stability of Γ_1 , ..., Γ_M is neither necessary nor sufficient
- x(t) is a random variable (need formal stability definition)
- Why do we care about stability?
 - If unstable, want to control
 - If stable, want to recover optimally

Asymptotic stability definitions

How does x(t) evolve as $t \to \infty$?

Asymptotic stability definitions

How does x(t) evolve as $t \to \infty$?

Mean Stability: For any $\vec{x}(0) \ge 0$, $\lim_{t\to\infty} \mathbb{E}[||\vec{x}(t)||] = 0$

Asymptotic stability definitions

How does x(t) evolve as $t \to \infty$?

Mean Stability: For any $\vec{x}(0) \ge 0$, $\lim_{t\to\infty} \mathbb{E}[||\vec{x}(t)||] = 0$

Almost Surely Stable: For any $\vec{x}(0) \ge 0$, $\mathbb{P}[\lim_{t\to\infty} ||\vec{x}(t)|| = 0] = 1$

Stability Results

System dynamics:

$$\begin{aligned} x(t+1) &= \Gamma_{m(t)}x(t) \\ \mathbb{P}[m(t+1) &= j|m(t) = i] = \pi_{ij} \\ x(t) &\ge 0 \quad \forall t \\ x(0), m(0) \quad \text{(given)} \end{aligned}$$

Result 1

The system is Mean Stable if and only if

Spectral Radius(\mathcal{B}) < 1

where $\mathcal{B} = (\Pi^T \otimes \mathbb{I}_n) diag(\Gamma_i)$

Stability Results

System dynamics:

$$\begin{aligned} x(t+1) &= \Gamma_{m(t)} x(t) \\ \mathbb{P}[m(t+1) &= j | m(t) = i] = \pi_{ij}(t) \\ x(t) &\geq 0 \quad \forall t \\ x(0), m(0) \quad \text{(given)} \end{aligned}$$

Result 1 (extension)

If Markovian transition matrices are periodic with time period K, the system is mean stable if and only iff

Spectral Radius
$$(\mathcal{B}_k \mathcal{B}_{k+1} \dots \mathcal{B}_{k+K}) < 1$$

for some $k \in [0, K]$ and $\mathcal{B}_t = (\Pi_t^T \otimes \mathbb{I}_n) diag(\Gamma_i)$

Stability Results

System dynamics:

$$\begin{split} x(t+1) &= \Gamma_{m(t)} x(t) \\ \mathbb{P}[m(t+1) &= j | m(t) = i] = \pi_{ij}(t) \\ x(t) &\geq 0 \quad \forall t \\ x(0), m(0) \quad \text{(given)} \end{split}$$

Result 2 Mean Stability \Rightarrow Almost Sure Stability

Karthik Gopalakrishnan

23 Feb 2018 14 / 25

Example: Air Traffic Delay Model

- Periodic system (24 hours) and time dependent transition probability, i.e $\Pi = \Pi_t$,
 - Spectral radius $(\mathcal{B}_1\mathcal{B}_2\ldots\mathcal{B}_{24})=0.67<1$
 - Mean Stable and Almost Surely Stable

Example: Air Traffic Delay Model

- Periodic system (24 hours) and time dependent transition probability, i.e $\Pi = \Pi_t$,
 - Spectral radius $(\mathcal{B}_1\mathcal{B}_2\ldots\mathcal{B}_{24})=0.67<1$
 - Mean Stable and Almost Surely Stable
- If average transition matrix for the day,
 - Spectral radius $(\mathcal{B}) = 1.061 > 1$
 - Not Mean Stable

The temporal patterns in the discrete mode transition probabilities are critical in stabilizing the system

III. Control of the switched network model

Karthik Gopalakrishnan

Switching network models

23 Feb 2018 16 / 25

What can we control?

Aim: Minimize $||\sum_{t=1}^{T} \mathbb{E}[x(t)]||$ (eg. delay cost)

Two control options:

Discrete mode

- Can force certain mode transitions to occur
- Modifies the transition probability $\boldsymbol{\Pi}$
- Penalty on forced transition

What can we control?

Aim: Minimize $||\sum_{t=1}^{T} \mathbb{E}[x(t)]||$ (eg. delay cost)

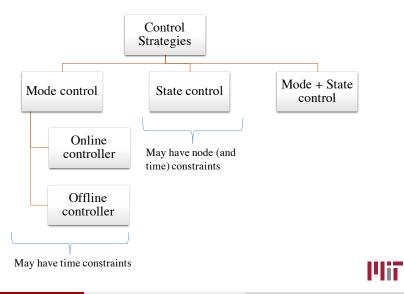
Two control options:

- Discrete mode
 - Can force certain mode transitions to occur
 - ${\, \bullet \,}$ Modifies the transition probability Π
 - Penalty on forced transition
- 2 Continuous state

•
$$x(t+1) = \Gamma_{m(t)}x(t) - u(t)$$

• Penalty of $\beta^T u(t)$

Overview



Mode controller - Online

- Observe $x(t^*)$, $m(t^*)$ at time t^*
- Control decision: Force a transition or random transition (Π_t)
- Penalty: C(i, j, t) if forced from mode i to j at t
- Minimize: $\sum_{t=t^*}^T ||\mathbb{E}[x(t)]|| + \sum_{i,j} C(m(t^*), j) \mathbf{1}_{forced}$

Mode controller - Online

- Observe $x(t^*)$, $m(t^*)$ at time t^*
- Control decision: Force a transition or random transition (Π_t)
- \bullet Penalty: C(i,j,t) if forced from mode i to j at t
- Minimize: $\sum_{t=t^*}^T ||\mathbb{E}[x(t)]|| + \sum_{i,j} C(m(t^*), j) \mathbf{1}_{forced}$
- Greedy myopic solution:

 $\min\{ J(x(t^*), i, t^*), \quad \min_j (C(i, j, t^*) + J(\Gamma_i x(t^*), j, t^* + 1)) \}$

$$J(x(t^*), i, t^*) = \sum_{t=t^*}^T ||\mathbb{E}[x(t)]||$$
 : Easy to compute

Mode controller - Offline

- Observe: m(t) at time t
- Pre-determined control decision: Force a transition or random transition (Π_t)
- Minimize $\sum_{t=1}^{T} ||\mathbb{E}[x(t)]|| + \mathbb{E}[\sum_{i,j,t} C(i,j,t)]$

Mode controller - Offline

- Observe: m(t) at time t
- Pre-determined control decision: Force a transition or random transition (Π_t)
- Minimize $\sum_{t=1}^{T} ||\mathbb{E}[x(t)]|| + \mathbb{E}[\sum_{i,j,t} C(i,j,t)]$
- Solution: Greedy heuristic

 $\begin{array}{l} \mbox{Step 1 Compute cost for all forced transitions (i,j,t)} \\ \mbox{Step 2 Add min cost transition to control policy and update Π} \\ \mbox{Step 3 Repeat until cost stops decreasing} \end{array}$

State controller

- Observe: $x(t^*)$ and $m(t^*)$
- Myopic, greedy formulation to decide on $\boldsymbol{u}(t^*)$
- Penalty: $\beta^T u(t^*)$
- Optimize $u(t^*)$ at time t^*

State controller

- Observe: $x(t^*)$ and $m(t^*)$
- $\bullet\,$ Myopic, greedy formulation to decide on $u(t^*)$
- Penalty: $\beta^T u(t^*)$
- Optimize $u(t^*)$ at time t^*

$$\begin{array}{ll} {\rm Min} & & \sum_{t=t^*}^T ||\mathbb{E}[x(t)]|| + \beta^T u(t^*) \\ {\rm s.t} & & x(t^*+1) = \Gamma_{m(t^*)} x(t^*) - u(t^*) \\ & \vdots & & \vdots \\ & & x(t^*+1) \geq 0, \quad 0 \leq u(t^*) \leq U_{max} \end{array}$$

State controller - Solution

• Threshold policy

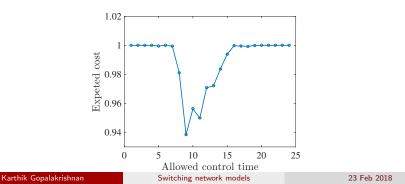
$$u_i(t^*) = \begin{cases} \min\{U_{max}, [\Gamma_{m(t^*)}x(t^*)]_i\} & \text{if } \beta_i < d_i \\ 0 & \text{otherwise} \end{cases}$$

 d_i is a known function (depends on Π_t and Γ_m)

• Can account for temporal constraints and node constraints easily

- Baseline, no control: $||\sum_{t=1}^{24} \mathbb{E}[x(t)]|| = 1$
- Mode control (expected delay + mode transition cost)
 - Online heuristic: 0.86
 - Offline heuristic: 0.88

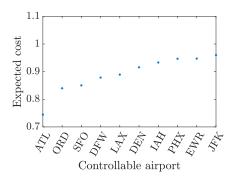
- Baseline, no control: $||\sum_{t=1}^{24} \mathbb{E}[x(t)]|| = 1$
- Mode control (expected delay + mode transition cost)
 - Online heuristic: 0.86
 - Offline heuristic: 0.88
 - Offline heuristic with temporal constraint: 0.94



23 / 25

- State control (expected delay + state control cost)
 - Cost with control at all airports: 0.17

- State control (expected delay + state control cost)
 - Cost with control at all airports: 0.17
 - Cost with control at only one airport:



- Switched system model for switching topology network models
- ② Conditions for the system to be stable
- Ieuristics to control the mode and state

Extensions:

- Finite time stability
- Optimal mode controllers, integration of mode and state control