Stability and control of switching network models

Karthik Gopalakrishnan

Advisor: Prof. Hamsa Balakrishnan

Massachusetts Institute of Technology

23 Feb 2018

Network models

"A network is a set of items, which we call nodes, with connections between them, called edges" ${ }^{1}$

- Networks models are widely used in several domains
- Eg: Spread of epidemics, opinions on social networks, failure in infrastructure networks
- Models are characterized by
- Nodes
- Network topology (adjacency matrix $A=\left[a_{i j}\right]$)
- A description of the process (How it evolves in time)
${ }^{1} \mathrm{M}$ Newman, The structure ans function of complex networks

Network topology may change with time

- Eg: Long term models, demand cycles in infrastructure networks, noise
- Deterministic or random transitions
- Our work:
- Model for process on networks with randomly switching topologies
- Stability
- Control

I. Model formulation

Model

- N nodes
- $x(t) \in \mathbb{R}^{N \times 1}$ is the state node at time t
- M discrete modes $\left\{m_{1}, m_{2}, \ldots, m_{M}\right\}$
- Each corresponds to an adjacency matrix A_{m}

Model

- N nodes
- $x(t) \in \mathbb{R}^{N \times 1}$ is the state node at time t
- M discrete modes $\left\{m_{1}, m_{2}, \ldots, m_{M}\right\}$
- Each corresponds to an adjacency matrix A_{m}
- Linear system dynamics within each mode:

$$
x(t+1)=f\left(A_{m}\right) x(t)
$$

- For simplicity, $x(t+1)=\Gamma_{m} x(t)$

Model (continued)

Node state : $x(t)$
Discrete mode: m (finite set)
Linear dynamics: $x(t+1)=\Gamma_{m} x(t)$

- Modes (and the topology) change with time
- Markov transition

$$
\mathbb{P}[m(t+1)=j \mid m(t)=i]=\pi_{i j}(t)
$$

- Transition matrix Π_{t} are known for a system
- Note: Transition matrices may be time varying

Summary of Model

- The system is completely described by

$$
\begin{aligned}
& x(t+1)=\Gamma_{m(t)} x(t) \\
& \mathbb{P}[m(t+1)=j \mid m(t)=i]=\pi_{i j}(t) \\
& x(0), m(0) \quad \text { (given) }
\end{aligned}
$$

- Features: Continuous node representation, weighted directed interaction and switching topology
- This is a (Positive) Markov Jump Linear System

Model example: Air traffic delay

- Nodes: Airports, $x(t)$ delay level at airports
- 12 discrete modes (Eg: Chicago inc, SFO dec, Low NAS dec ..)
- Transition probability Π_{t} depends on the time of day

- Model is built and validated using operational data ${ }^{2}$

II. Stability of the switched network model

What does stability of MJLS mean?

- For a classic LTI system $x(t+1)=A x(t)$, stability depends on spectral radius of A

What does stability of MJLS mean?

- For a classic LTI system $x(t+1)=A x(t)$, stability depends on spectral radius of A
- However stability of $\Gamma_{1}, \ldots, \Gamma_{M}$ is neither necessary nor sufficient
- $x(t)$ is a random variable (need formal stability definition)
- Why do we care about stability?
- If unstable, want to control
- If stable, want to recover optimally

Asymptotic stability definitions

How does $x(t)$ evolve as $t \rightarrow \infty$?

Asymptotic stability definitions

How does $x(t)$ evolve as $t \rightarrow \infty$?

Mean Stability:
For any $\vec{x}(0) \geq 0, \lim _{t \rightarrow \infty} \mathbb{E}[\|\vec{x}(t)\|]=0$

Asymptotic stability definitions

How does $x(t)$ evolve as $t \rightarrow \infty$?

Mean Stability:
For any $\vec{x}(0) \geq 0, \lim _{t \rightarrow \infty} \mathbb{E}[\|\vec{x}(t)\|]=0$
Almost Surely Stable:
For any $\vec{x}(0) \geq 0, \mathbb{P}\left[\lim _{t \rightarrow \infty}\|\vec{x}(t)\|=0\right]=1$

Stability Results

System dynamics:

$$
\begin{aligned}
& x(t+1)=\Gamma_{m(t)} x(t) \\
& \mathbb{P}[m(t+1)=j \mid m(t)=i]=\pi_{i j} \\
& x(t) \geq 0 \quad \forall t \\
& x(0), m(0) \quad \text { (given) }
\end{aligned}
$$

Result 1
The system is Mean Stable if and only if

Spectral Radius $(\mathcal{B})<1$

where $\mathcal{B}=\left(\Pi^{T} \otimes \mathbb{I}_{n}\right) \operatorname{diag}\left(\Gamma_{i}\right)$

Stability Results

System dynamics:

$$
\begin{aligned}
& x(t+1)=\Gamma_{m(t)} x(t) \\
& \mathbb{P}[m(t+1)=j \mid m(t)=i]=\pi_{i j}(t) \\
& x(t) \geq 0 \quad \forall t \\
& x(0), m(0) \quad \text { (given) }
\end{aligned}
$$

Result 1 (extension)
If Markovian transition matrices are periodic with time period K , the system is mean stable if and only iff

Spectral Radius $\left(\mathcal{B}_{k} \mathcal{B}_{k+1} \ldots \mathcal{B}_{k+K}\right)<1$
for some $k \in[0, K]$ and $\mathcal{B}_{t}=\left(\Pi_{t}^{T} \otimes \mathbb{I}_{n}\right) \operatorname{diag}\left(\Gamma_{i}\right)$

Stability Results

System dynamics:

$$
\begin{aligned}
& x(t+1)=\Gamma_{m(t)} x(t) \\
& \mathbb{P}[m(t+1)=j \mid m(t)=i]=\pi_{i j}(t) \\
& x(t) \geq 0 \quad \forall t \\
& x(0), m(0) \quad \text { (given) }
\end{aligned}
$$

Result 2
Mean Stability \Rightarrow Almost Sure Stability

Example: Air Traffic Delay Model

- Periodic system (24 hours) and time dependent transition probability, i.e $\Pi=\Pi_{t}$,
- Spectral radius $\left(\mathcal{B}_{1} \mathcal{B}_{2} \ldots \mathcal{B}_{24}\right)=0.67<1$
- Mean Stable and Almost Surely Stable

Example: Air Traffic Delay Model

- Periodic system (24 hours) and time dependent transition probability, i.e $\Pi=\Pi_{t}$,
- Spectral radius $\left(\mathcal{B}_{1} \mathcal{B}_{2} \ldots \mathcal{B}_{24}\right)=0.67<1$
- Mean Stable and Almost Surely Stable
- If average transition matrix for the day,
- Spectral radius $(\mathcal{B})=1.061>1$
- Not Mean Stable

The temporal patterns in the discrete mode transition probabilities are critical in stabilizing the system

III. Control of the switched network model

What can we control?

Aim: Minimize $\left\|\sum_{t=1}^{T} \mathbb{E}[x(t)]\right\|$ (eg. delay cost)
Two control options:
(1) Discrete mode

- Can force certain mode transitions to occur
- Modifies the transition probability Π
- Penalty on forced transition

What can we control?

Aim: Minimize $\left\|\sum_{t=1}^{T} \mathbb{E}[x(t)]\right\|$ (eg. delay cost)
Two control options:
(1) Discrete mode

- Can force certain mode transitions to occur
- Modifies the transition probability Π
- Penalty on forced transition
(2) Continuous state
- $x(t+1)=\Gamma_{m(t)} x(t)-u(t)$
- Penalty of $\beta^{T} u(t)$

Overview

Mode controller - Online

- Observe $x\left(t^{*}\right), m\left(t^{*}\right)$ at time t^{*}
- Control decision: Force a transition or random transition $\left(\Pi_{t}\right)$
- Penalty: $C(i, j, t)$ if forced from mode i to j at t
- Minimize: $\sum_{t=t^{*}}^{T}\|\mathbb{E}[x(t)]\|+\sum_{i, j} C\left(m\left(t^{*}\right), j\right) \mathbf{1}_{\text {forced }}$

Mode controller - Online

- Observe $x\left(t^{*}\right), m\left(t^{*}\right)$ at time t^{*}
- Control decision: Force a transition or random transition $\left(\Pi_{t}\right)$
- Penalty: $C(i, j, t)$ if forced from mode i to j at t
- Minimize: $\sum_{t=t^{*}}^{T}\|\mathbb{E}[x(t)]\|+\sum_{i, j} C\left(m\left(t^{*}\right), j\right) \mathbf{1}_{\text {forced }}$
- Greedy myopic solution:

$$
\begin{aligned}
& \min \left\{J\left(x\left(t^{*}\right), i, t^{*}\right), \quad \min _{j}\left(C\left(i, j, t^{*}\right)+J\left(\Gamma_{i} x\left(t^{*}\right), j, t^{*}+1\right)\right)\right\} \\
& J\left(x\left(t^{*}\right), i, t^{*}\right)=\sum_{t=t^{*}}^{T}\|\mathbb{E}[x(t)]\|: \text { Easy to compute }
\end{aligned}
$$

Mode controller - Offline

- Observe: $m(t)$ at time t
- Pre-determined control decision: Force a transition or random transition $\left(\Pi_{t}\right)$
- Minimize $\sum_{t=1}^{T}\|\mathbb{E}[x(t)]\|+\mathbb{E}\left[\sum_{i, j, t} C(i, j, t)\right]$

Mode controller - Offline

- Observe: $m(t)$ at time t
- Pre-determined control decision: Force a transition or random transition $\left(\Pi_{t}\right)$
- Minimize $\sum_{t=1}^{T}\|\mathbb{E}[x(t)]\|+\mathbb{E}\left[\sum_{i, j, t} C(i, j, t)\right]$
- Solution: Greedy heuristic

Step 1 Compute cost for all forced transitions (i, j, t)
Step 2 Add min cost transition to control policy and update Π
Step 3 Repeat until cost stops decreasing

State controller

- Observe: $x\left(t^{*}\right)$ and $m\left(t^{*}\right)$
- Myopic, greedy formulation to decide on $u\left(t^{*}\right)$
- Penalty: $\beta^{T} u\left(t^{*}\right)$
- Optimize $u\left(t^{*}\right)$ at time t^{*}

State controller

- Observe: $x\left(t^{*}\right)$ and $m\left(t^{*}\right)$
- Myopic, greedy formulation to decide on $u\left(t^{*}\right)$
- Penalty: $\beta^{T} u\left(t^{*}\right)$
- Optimize $u\left(t^{*}\right)$ at time t^{*}

Min
s.t

$$
\begin{aligned}
& \sum_{t=t^{*}}^{T}\|\mathbb{E}[x(t)]\|+\beta^{T} u\left(t^{*}\right) \\
& x\left(t^{*}+1\right)=\Gamma_{m\left(t^{*}\right)} x\left(t^{*}\right)-u\left(t^{*}\right) \\
& \vdots \\
& x\left(t^{*}+1\right) \geq 0, \quad 0 \leq u\left(t^{*}\right) \leq U_{\max }
\end{aligned}
$$

State controller - Solution

- Threshold policy

$$
u_{i}\left(t^{*}\right)= \begin{cases}\min \left\{U_{\max },\left[\Gamma_{m\left(t^{*}\right)} x\left(t^{*}\right)\right]_{i}\right\} & \text { if } \beta_{i}<d_{i} \\ 0 \quad \text { otherwise }\end{cases}
$$

d_{i} is a known function (depends on Π_{t} and Γ_{m})

- Can account for temporal constraints and node constraints easily

Application: Air traffic delay model

- Baseline, no control: $\left\|\sum_{t=1}^{24} \mathbb{E}[x(t)]\right\|=1$
- Mode control (expected delay + mode transition cost)
- Online heuristic: 0.86
- Offline heuristic: 0.88

Application: Air traffic delay model

- Baseline, no control: $\left\|\sum_{t=1}^{24} \mathbb{E}[x(t)]\right\|=1$
- Mode control (expected delay + mode transition cost)
- Online heuristic: 0.86
- Offline heuristic: 0.88
- Offline heuristic with temporal constraint: 0.94

Application: Air traffic delay model

- State control (expected delay + state control cost)
- Cost with control at all airports: 0.17

Application: Air traffic delay model

- State control (expected delay + state control cost)
- Cost with control at all airports: 0.17
- Cost with control at only one airport:

Summary

(1) Switched system model for switching topology network models
(2) Conditions for the system to be stable
(3) Heuristics to control the mode and state

Extensions:

- Finite time stability
- Optimal mode controllers, integration of mode and state control

