A Networks Perspective of Air Traffic Delays

Karthik Gopalakrishnan

Hamsa Balakrishnan, Richard Jordan

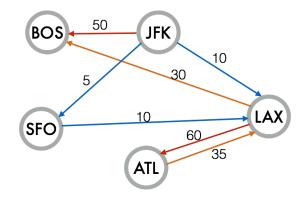
MIT

16 August 2016

Introduction: Air Transportation System

- Complex interconnected system
- Delays can spread through the entire system
- 22% of the flights in 2015 were delayed by more than 15 min
- 40% of these delays were due to late arrival of incoming aircraft

Aim: Understand Delay Dynamics on Networks

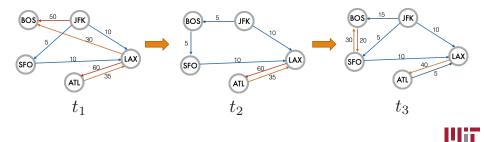

Motivation:

- Which airports have persistent delays?
- What is the susceptibility of an airport to delays from others?

Outline:

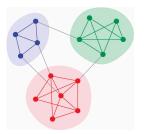
- Representing the state of delay by a network
- 2 Identify characteristic patterns and model their evolution
- Metrics for resilience

Delay Network



- Edge weights: Median delay on that link
- $\bullet\,$ Total inbound delay at LAX $=\!10+10+35=55\,\,\mathrm{min/flt}$
- Total outbound delay at LAX =60 + 30 = 90 min/flt

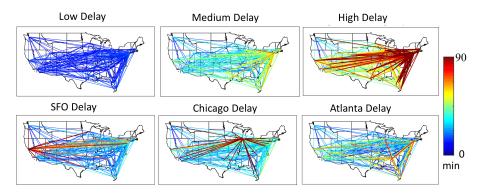
45


Time series of Delay Network

- Delay networks evolve in time
- Data: Bureau of Transportation Statistics (2011-12)
 - 158 airports
 - $\bullet \ \sim \ 1100 \ \text{edges}$
 - $\bullet~\sim$ 17,000 networks for 2 years

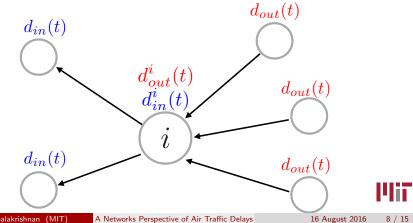
Insights from delay networks: 1. Community structure

Airports that form a community have high delay between them

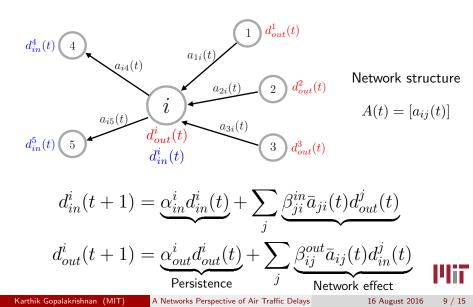

Example of community structure

Community structure for delay network (23 March 2011)

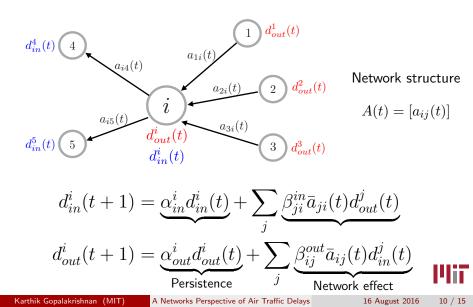
Insights from delay networks:2. Characteristic delay states


• These are the typical delay patterns seen in the US airspace

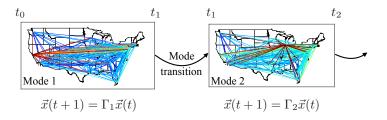
Karthik Gopalakrishnan (MIT) A Networks Perspective of Air Traffic Delays


Model for evolution of airport delay

Features of airport delay:

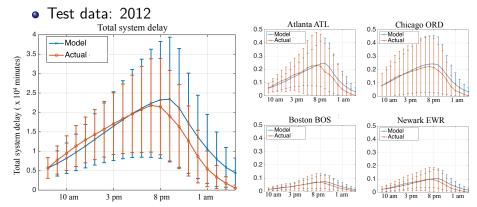

- Delays at an airport tend to persist
- Delays at an airport depend on connectivity

Airport delay dynamics



Airport delay dynamics

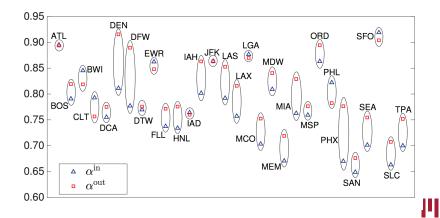
Delay propagation model


• Instead of A(t), use the discrete networks from clustering

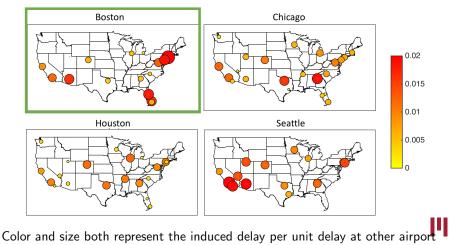
• Delay evolution within discrete mode: $\vec{x}(t+1) = \Gamma_{m(t)}\vec{x}(t)$

Discrete mode evolution: Markov transitions

Validation: Evolution of delays



 $\bullet~{\rm Learn}~\alpha$ and $\beta~{\rm from}~{\rm 2011}~{\rm data}$


Resilience measure: Persistence of delays

- High $\alpha \Rightarrow$ delays will persist longer
- \bullet Airports with demand close to capacity have high α

Resilience measure: Influence of airports

• Inbound delay at an airport depends on outbound delay from other airports

Karthik Gopalakrishnan (MIT)

A Networks Perspective of Air Traffic Delays

Conclusions

- Network representation is useful to identify characteristic delay patterns
- We quantify the tendency for delays to persist and the influence of network on delays at the top 30 US airports
- S Applications: Delay prediction and developing control strategies